

Discussion on Push-In-Extract-Out Scheduler in

Hardware

Cristina McLaughlin

Department of Electrical Engineering

University of Hawaii at Manoa

Honolulu, United States

cemclaug@hawaii.edu

Abstract—Increasing link speeds, network congestion, and an

influx of connected devices have created a demand for packet

schedulers that can support quantity and speed while maintaining

quality of service. Offloading packet scheduling to hardware can

meet the demands of speed but has serious drawbacks in

scalability and flexibility of design. Current hardware schedulers

that are being used, like Push-In-First-Out (PIFO) or First-In-

First-Out (FIFO), lack the ability to express a wide range of packet

scheduling algorithms and policies. This paper summarizes

research conducted in the paper “Fast, Scalable, and

Programmable Packet Scheduler in Hardware” by Vishal

Shrivastav; it describes a new iteration of the PIFO primitive

called Push-In-Extract-Out (PIEO), which maintains an ordered

list of elements and allows dequeue from any position by

supporting a programmable filtering function. Next, the hardware

implementation, results, and evaluation are reviewed. Finally, I

present my thoughts on the paper, what I found most interesting,

and issues that I have with the experiments conducted. Overall,

the research on the PIEO primitive is new and interesting but

lacks in areas that would make the case truly compelling.

Keywords—hardware scheduler, programmable networks,

programmable packet scheduler

I. INTRODUCTION

The Internet has become an all-encompassing medium for

global communications, information access, streaming

services, entertainment, and business. The 2020 Covid-19

pandemic has created a sudden reliance on services that allow

us to work and learn from home like Zoom, Google Classroom,

and Microsoft Teams. Globally, internet service providers saw

a 40-50% network traffic increase, with some companies

throttling streaming quality to prevent congestion overload [1-

2]. The billions of connected devices coming online every year

(a projected 75 billion by 2025 [3]) and increasing link speeds

has created a critical demand for packet schedulers that can

support the growing packet quantity and speed while

maintaining quality of service.

Packet schedulers are functions at the network protocol

level responsible for allocating bandwidth to competing

connections and implementing scheduling algorithms or

policies. The goal of a packet scheduler is to address network

congestion, latency, load balancing, and packet loss without

simply relying on a “best effort” delivery. Scheduling

determinations are made by different queuing algorithms and

protocols such as Deficit Round Robin (DRR) or Token Bucket

Filter (TBF). Schedulers can also work based on quality of

service (QoS) protocols like Resource Reservation Protocol

(RSVP) or Differentiated Services (DiffServ) to prioritize

certain types of packets over others on the network.

Scheduling can occur both in software and on hardware. For

instance, hardware implementations occur on network

interfaces (NICs) field-programmable gate arrays (FPGAs)

while software implementations are included in operating

systems like Linux, dummynet, and BSD operating systems.

Software schedulers allow for experimentation with policies or

algorithms but come at the cost of high CPU utilization and

lower time precision. For instance, software scheduling can

barely support 1-2 millions of packets per second (Mpps), while

a high-end NIC reaches peak rate of 59.5 Mpps [4]. Meeting

nanosecond-level precision in software is difficult due to the

serialization of data, low resolution software timers, and

transmission jitter. On the other hand, hardware

implementations are generally fast and precise, but lack

programmability and flexibility. Hardware schedulers are also

difficult to modify after execution and generally can only

support one scheduling algorithm, resulting in a overall

preference for software schedulers. The motivation of many

new schedulers is to bridge the gap between the flexibility of

software and speed of hardware by making the hardware

scheduler configurable to support several algorithms.

Research conducted by Vishal Shrivastav [5] proposed a

new programmable packet scheduler in hardware, which is fast

and scalable to overcome the limitations of schedulers in

software. The proposed scheduling primitive Push-In-Extract-

Out (PIEO) maintains an ordered list of elements and filters to

select the eligible element with the smallest rank to dequeue.

To demonstrate the feasibility of this new scheduler Shrivastav

also prototyped the design on a Stratix V FPGA.

This paper focusses on summarizing and discussing the

PIEO primitive. Section 2 provides background information

and reviews relevant work in new scheduling primitives and

implementations in hardware. Section 3 will provide more

background information on PIEO scheduling. Section 4 will

describe the hardware design and implementation on an FPGA.

Next, Section 5 contains a discussion of PIEO; this will include

my thoughts on the paper, issues with the experimentation, and

my suggestions for future work based on relevant research in

Section 4. Lastly, Section 6 will conclude the paper.

II. BACKGROUND

All scheduling algorithms are based on two decisions: i)

when packets should be scheduled and ii) the order packets are

scheduled based rank and all other elements enqueued. The

rank property is determined by the chosen scheduling algorithm

and programmed as function to assign ranks to individual

elements. Generally, both decisions can be made as soon as a

packet is enqueued.

A. Packet Scheduling Primitives

Typical hardware schedulers are based on one of the two

scheduling primitives—First-In-First-Out (FIFO) or Push-In-

First-Out (PIFO). FIFO schedules packets in order of arrival.

PIFO is a priority queue that pushes elements into position

based on rank and always dequeues from the head of the queue

[6]. PIFO supports two operations: enqueue(f), which inserts

the element f into the queue according to its rank, and

dequeue(), which extracts the head element of the queue.

However, both primitives lack in scalability and

expressiveness. The current PIFO design only scales to 2048

flows, without finer granularity to support one flow per packet

[6]. FIFO and PIFO are also not expressive enough to define

classes required for certain scheduling algorithms. PIFO cannot

support the dynamic filtering at dequeue that is becoming

common in cloud network scheduling policies.

B. Packet Scheduling Algorithms

Packet scheduling algorithms or policies determine when

and what order elements are scheduled while the primitive

provides abstractions for implementation. Different rank

functions and eligibility predicates gives the ability to express

a wide range of scheduling algorithms through a single

primitive. In addition, scheduling algorithms are classified into

two categories: work-conserving and non-work conserving

algorithms. The work-conserving category continuously sends

packets as long as there are elements queued [7]. The scheduler

always attempts to keep available resources busy. On the other

hand, non-work conserving schedulers allow the link to be idle

despite the presence of packets needing to be scheduled [7].

These schedulers are useful for traffic shaping, enhancing

traffic predictability, and reducing jitter.

C. Related Work

Scheduling algorithms have been studied extensively, and

there are multiple research papers that expand on scheduling in

hardware with new architectures or programmability functions.

LOOM [8]. Loom proposes a new NIC design that moves all

per-flow scheduling decisions into the hardware. It is a

customizable and flexible packet scheduler that can implement

a variety of scheduling policies. Loom uses an OS/NIC

interface and enables the OS to drive the link speeds.

Offloading scheduling to the NIC ensures low CPU utilization.

Loom is also the only multi-queue NIC design that can

efficiently enforce network policy. It achieves this through two

key components in the programmable NIC design: scheduling

hierarchy and the OS/NIC interface that controls the NICs

packet scheduling. The hierarchy is implemented through a

common tree of priority queues that rely on the PIFO primitive.

Different scheduling algorithms are implemented by changing

the rank computation and this model can emulate any

scheduling algorithm.

A Configurable Hardware Scheduler for Real-Time

Systems [9]. This research presents a configurable hardware

scheduler architecture that can implement three different

scheduling policies: priority-based, rate monotonic, and earliest

deadline first. The scheduler is fully run on an FPGA which

allows for high-resolution timing and can be scaled by

implementing fixed cycle operations. However, this

implementation lacks in programmability and flexibility to

implement more complicated scheduling policies.

This research differs from other hardware implementations

because it takes advantage of recent FPGA technology that has

hardware that is reconfigurable in less than 1.5 ms. They place

part of an RTOS in the hardware to reduce scheduling overhead

and time-tick processing by thousands of assembly instructions

for a system with 50 tasks.

PSPAT [4]. PSPAT is an efficient and robust software

implemented packet scheduler than can reach near hardware

speed. This architecture decouples clients, scheduler, and

device driver through the use of lock-free, memory-friendly

mailboxes. This allows for distribution of work within in the

system and maximum parallelism leading to a peak scheduling

rate of almost 40 Mpps. PSPAT maintains scalability and

flexibility to implement several different scheduling policies

like DRR, WF2Q, and QFQ; however, it has high CPU

utilization and memory stalls in the system are heavily

dependent on the CPU architecture used.

Programmable Packet Scheduling at Line Rate [6]. This was

the original paper describing the Push-In-First-Out (PIFO)

queue. The research details the implementation of a

programmable PIFO scheduler in hardware that supports 5-

level hierarchical scheduling and runs at a clock frequency of 1

GHz. It also has the same buffer size as a typical shared

memory switch in a data center which support ~60K packets

and ~1K flows, while only used 4% additional chip area.

III. PUSH-IN-EXTRACT-OUT (PIEO) PRIMITIVE AND HARDWARE

IMPLEMENTATION

This section describes the PIEO primitive and summarizes

the programming framework that was used in the original

research.

A. PIEO Definition

Push-In-Extract-Out is a generalization of the Push-In-

First-Out primitive. Each PIEO element has a rank and

eligibility predicate that are programmed based on the user’s

choice of scheduling policy. PIEO also maintains an ordered

list of elements—increasing by rank—through the “Push-In”

enqueue function. This ensures that each element is placed in

the proper position within the ordered list. Finally, during

scheduling, the “Extract-Out” function filters through elements

whose eligibility predicates are true, and dequeues the element

with the smallest rank. As a result, PIEO always schedules the

“smallest ranked eligible” element.

PIEO works through the use of three functions: enqueue(f),

dequeue(), and dequeue(f). These operations are described

below:

enqueue(f): This function inserts the element f into the ordered

list according to f’s rank.

dequeue(): This function filters elements from the ordered list

whose eligibility predicates are true. It selects the smallest

ranked element and dequeues it. When a tie occurs for eligible

elements, the oldest element is dequeued. If there are no eligible

elements, the function returns NULL.

dequeue(f): If a specific element f needs to be dequeued, this

function dequeues it from the list without having to rely on rank

or eligibility predicates. If element f does not exist within the

list, the function returns NULL. This operation provides the

flexibility to update the rank of an element if needed. For

example, one would dequeue(f) the element, update the rank or

predicate, then enqueue(f) again.

B. PIEO in Scheduling Algorithms

This section summarizes the expressiveness of the PIEO

primitive among different scheduling algorithms including

work-conserving, non-work conserving, hierarchical,

asynchronous, and priority scheduling.

Under work conserving algorithms, PIEO can express

Deficit Round Robin (DRR), Weighted Fair Queuing (WFQ),

and Worst-case Fair Queueing (WF2Q+). For example, WF2Q+

calculates a virtual start and finish time for each packet within

a flow. It then schedules the flow whose head packet has the

smallest finish time among all other flow heads. Within the

PIEO primitive, element ranks would be equal to the finish time

and the scheduling predicate would filter for elements that are

eligible to be scheduled.

In non-work conserving algorithms, PIEO can express

Token Bucket (TB) and Rate-controlled Static-Priority

Queuing (RCSP). RCSP is an algorithm that is used to shape

traffic, by assigning eligibility times to each packet in a flow

[10]. At any given time, it schedules the highest priority flow

amongst all other flows. Within the PIEO structure, element

rank would be assigned by the priority variable and the

predicate would filter for elements whose time eligibility is

true.

Hierarchical scheduling is more difficult than flat

scheduling due to grouping flows into different classes. The

classes can contain custom scheduling policies that are unique

to the class, so using a single PIEO is not possible. To express

hierarchical scheduling a tree structure is used, where non-leaf

nodes are higher classes, and leaf nodes represent flows. A

PIEO is associated with each non-leaf node and used to

schedule the node’s children according to an eligibility

predicates and rank. The packets propagate upward until they

dequeue at the root of the tree. If we have an n-level tree, n

PIEOs are required to complete the scheduling.

Asynchronous scheduling is a way to break out of the

current scheduling algorithm to respond to packet scheduling

issues. For instance, asynchronous tasks can be used to avoid

starvation in strict priority scheduling or can be used to

schedule back on network feedback. As described before, the

dequeue(f) function can be used for asynchronous scheduling

to dequeue, re-rank, then re-enqueue the necessary element. In

the case of starvation avoidance, a user can define an alarm

function and handler to observe time spent in queue and if the

flow is starving, update the PIEO rank to increase its priority.

Priority scheduling like Shortest Job First (SJF), Shortest

Remaining Time First (SRTF), and Earliest Deadline First

(EDF) are easily expressed in a priority queue data structure. A

priority queue is easily expressed in PIEO by setting the rank to

the correct priority value, and just setting the eligibility

predicate for each element to true. With this method, elements

are only scheduled according to the rank.

C. PIEO Hardware Design and Implementation

This section summarizes the PIEO hardware scheduler

design and implementation. Shrivastav conducted the prototype

on the Stratix V FPGA which is comprised of ~2500 20Kbit

dual port SRAM blocks with block access latency of one clock

cycle. The main goal of implementing a scheduler in hardware

is to keep up with link speeds, therefore the implementation of

PIEO needs to execute each enqueue or dequeue function in

O(1) time. The hardware design stores the ordered list of

elements within SRAM as an array (2√𝑁) of sublists of size

√𝑁 elements. This hardware design requires 𝑂(√𝑁) flip flops

and comparators. The sublists are ordered in increasing rank,

and increasing order of eligibility time; therefore, both lists can

be accessed and compared in one clock cycle.

The enqueuing and dequeuing functions are conducted in

the hardware as follows. First, parallel comparisons are made

between to the two sublists to find the correct list to enqueue or

dequeue from. The correct sublist is extracted from SRAM.

Next, using parallel comparisons again and the priority policy,

an element within the chosen sublist is enqueued or dequeued,

and the new sublist is updated in SRAM.

IV. RESULTS AND EVALUATION

This section summarizes the results and evaluation of the

PIEO hardware prototype. The performance was evaluated

across three different metrics: scalability, scheduling rate, and

programmability. Then, each field was compared against a

PIFO implementation synthesized on the same FPGA.

A. Scalability

The scalability metric in the research evaluated the

percentage of Adaptive Logic Modules (ALMs) and the

percentage of SRAM consumed. The ALMs were used to

implement the combinational and flip-flop-based logic, while

the SRAM was used to store the ordered list.

Figure 1 shows the results of the percentage of consumed

ALMs using PIFO versus PIFO. The control PIFO

implementation consumed 64% of the available resources when

handling a scheduler size of 1 K elements. The figure also

shows that PIFO reaches it maximum size before 2 K elements

meaning the scalability is limited. In contrast, PIEO compares

well, reaching only about 10% consumption at 1 K elements

and ~15% at 2 K elements. The graph does not even show it

reaching maximum resource capacity, so the FPGA can easily

fit a 30 K element scheduler.

PIFO consumes exponentially more ALMs that PIEO

because it does not rely on SRAM and flip-flops to distribute

storage and processing. This is also why Figure 2 does not show

the SRAM consumption of PIFO. However, it does shows that

despite PIEO’s SRAM overhead, the total consumption

remained well below 10% for the first 16 K elements and

remained under 30% usage up to 65.5 K elements.

B. Scheduling Rate

The next metric evaluated was scheduling rate or the rate at

which the scheduler could make decisions. The scheduling rate

is a function of the clock rate of the scheduler circuit and the

number of cycles needed to execute each primitive operation.

Figure 3 shows the clock rates achieved by both PIFO and

PIEO. Due to the scalability limits of PIFO the clock rate could

only be tested up to 210 elements. Through the three points

collected PIFO performed twice as well as PIEO did. It is also

important to note that PIEO was not pipelined in this test while

PIFO was. PIEO’s design is limited by the number of SRAM

access ports and memory stages in different operations cannot

be executed in parallel meaning it can never be fully pipelined.

PIEO takes 4 clock cycles or about 50 ns per every primitive

operation. However, the clock rates achieved are both a

function of design and the hardware device used. The author

suggests that the design would run at much higher clock rates

on more powerful FPGAs or ASIC hardware. For example, the

PIFO design had a rate of 57MHz on the FPGA used while

performing at 1 GHz on an ASIC. The report extrapolates that

PIEO would take 4 ns at a 1 GHz clock rate.

C. Programmability

The last metric evaluated was programmability that the

PIEO primitive has and its ability to express a wide range of

scheduling algorithms. The author programmed two algorithms

using PIEO—Token Bucket and WF2Q—that were discussed

earlier. Token Bucket and WF2Q were chosen because they

implement rate-limiting and fair queuing which are widely used

policies in real-life scheduling implementations. Rate-limiting

is used to control the rate of requests that are sent or received,

and it is used to prevent denial of service attacks. Fair queuing

is designed to achieve fairness over all flows to prevent

starvation or greedy usage. The algorithms were then

prototyped on the FPGA using System Verilog. A two-level

hierarchical scheduler was prototyped, with ten nodes at level-

2 and 10 flows within each node for a total of 100 flows. Figure

4 shows the rate limit enforcement of the PIEO and that it was

successful across all Gbps. Figure 5 shows the results from the

fair queueing experiments. PIEO was able to accurately enforce

fair queueing across all flows with all rates.

V. DISCUSSION

PIEO represents a novel data structure that a hardware

packet scheduler can rely on. The research presented both a fast

and scalable implementation of an ordered list in hardware.

This section will be discussing my overall thoughts of the

paper; it will be split into a) my general opinions of the paper,

b) what I found most interesting and enjoyed, c) my criticisms

of the research and issues I had with experimentation, and lastly

d) suggestions for future work based on related work discussed

in Section 2.

A. General Opinions

Starting with my general opinions about the work, I thought

the premise was fascinating. After reading through the abstract

and introduction, I was immediately interested because the

paper promised to bridge the gap between software and

hardware schedulers. They proposed a programmable hardware

scheduler that is “fast, scalable, and more expressive than state-

of-the-art” and I wanted to read further about how a new, simple

primitive could achieve these statements. I also appreciated that

it was instantly clear what the author was evaluating and how

he continuously reiterated the three criteria: speed, scalability,

and programmability so the reader was never lost on the main

points. The paper also fit into my general interests because it

combined low-level algorithms with FPGAs.

Tying in with the interest factor, is how easy,

understandable, and straightforward the writing was. Unlike

other research papers I have read, this captured my attention,

then maintained it with clean, easy to understand writing. I was

surprised at the lack of proofs, equations, and math; the

introduction is the only section where time complexity is

mentioned, and it is brief. It was also clearly split into two

sections: describing PIEO and the hardware implementation of

it. The paper is very short, so it is not boring to read through. It

is 12 pages without the references, and only 7 pages of text

Fig. 1. Percentage of logic modules

(ALMs) consumed.

Fig. 2. SRAM consumption out of 6.4

MB.

Fig. 3. Clock rates achieved by PIEO and

PIFO.

when accounting for the number of figures—12 total—and the

amount of pseudocode. However, I also felt that the paper was

too brief on certain explanations; this problem will be discussed

further below.

As mentioned, this paper relies heavily on figures and

pseudocode to explain the PIEO model, programming

framework, and different types of packet scheduling. Some of

the figures were helpful, such as the generic packet scheduling

model versus the PIEO scheduling model. These figures make

the differences and improvements clear. However, I felt that

other figures were poorly designed, and the written

explanations were more understandable. For instance, there are

two figures that the diagram the enqueue and dequeue

operations from PIEO when conducted on an ordered list of size

16 elements (8 sublists each of size 4). Both figures show 32

columns of gray boxes filled with extremely small text; it was

so unreadable I ignored them in favor of the step-by-step text

descriptions. I feel like figures should be used to provide the

reader with more insight into a topic; in this case, I gained a

better understanding from the written explanations.

To conclude my general opinions, I think this paper did well

in style and readability. However, it could use improvement in

sections that were too brief in explanation and figures that were

too small to be readable.

B. Positives in Technical Areas

This section discusses the positive aspects of the technical

areas. First, I really appreciated the simplicity of design. The

author proposes PIEO which is a generalized version of PIFO.

By making the original PIFO design more generic, the author

was able to make the primitive more flexible than its

predecessor. The original design uses the first out mechanism,

which only dequeues from the head of the queue. The extract

mechanisms allow the user to program any dequeue criteria.

This small change allows PIEO to express key classes of packet

scheduling algorithms that PIFO cannot.

The straightforward design and minimal changes made to

PIFO in order to create PIEO also make the results more

impactful on the reader. I was surprised by the large differences

in scalability and speed between the two primitives. It speaks

clearly on how merely changing the dequeue method drastically

improves the performance of the scheduler. Looking back on

Figures 1 and 3, the differences in ALMs consumed and clock

rates achieved are even more impressive when understanding

how minimal the design changes were.

Another detail of the technical writing that I thought was

positive was the in-depth descriptions showing the

expressiveness of PIEO. In the original paper Section 4 goes

through multiple classes of algorithms such as work

conserving, non-work-conserving, hierarchical, asynchronous,

and priority scheduling. I appreciated the comprehensive

overview of how PIEO was implemented in each case. The

pseudocode also makes it clear on how the primitive is used

within the context of each scheduling policy; I could easily see

what the eligibility predicate was set to and what determined

rank for the enqueueing function.

C. Drawbacks in Technical Areas

There were several areas in the paper that did not perform

as a well; this section will be discussing issues that I had with

the experimentation and evaluation. My first criticism is the

lack of thorough comparisons between PIEO and other

queueing structures. Throughout the paper all the results show

PIEO performs far superior to the PIFO predecessor, but this is

the only comparison that is made. As a reader, I feel like the

results and evaluation would be more compelling if the there

were direct comparisons between the performance of PIEO and

other hardware schedulers. Even if the author could not conduct

the tests, he could report on the speed values or consumption of

resources provided in other research papers. I think even

implementing FIFO in hardware to have third data set would

greatly improve the reporting. With a third set, the reader could

really begin to understand how much an improvement PIEO

would be on current scheduling primitives. The current state of

the paper makes comparisons between two relatively unknown

queuing data structures so some of the significance is lost.

Next, there is also a lack of discussion on limitations and

improvements. Much like the point about making comparisons,

I feel that discussing limitations is important in making a

compelling case to the reader. As I was reading the glowing

performance evaluation, I began to question why this design

was not being immediately used in all hardware schedulers. Is

it because the solution is expensive (requires a $6,000 FPGA),

is it because PIEO cannot be pipelined, or is it due to difficulty

in implementation? These are questions that I had after reading

the results evaluation. In addition, the only suggestion for

improvement was to implement PIEO on a better, more

Fig. 4. Rate limit enforcement in PIEO.

Fig. 5. Fair queue enforcement in PIEO.

expensive FPGA or on ASIC hardware, which is also very

expensive.

Lastly, I had several issues with the specific section: 6.3

Programmability. This section of the paper described the testing

and evaluation of the programmability criteria. My main

criticism is that programmability is not defined, and it is not

clear why it is being tested. The previous section in the paper

that discusses the expressiveness of PIEO and implements

various algorithms in pseudocode does a great job in showing

the programmability. The actual testing only implements two—

Token Bucket and WF2Q—of the many algorithms that were

described. The algorithms were chosen because they implement

widely used scheduling policies, rate-limiting and fair-queuing.

However, the case for flexibility and programmability would be

much stronger if more scheduling algorithms were prototyped.

In addition, the graphs, shown in Figure 4 and 5 do not show or

provide further insights for the reader and the accompanying

text was also lacking. Overall, this section was the weakest in

the paper, and I feel like it could have been fully left out.

D. Future Work

In this portion I will be discussing ideas for future work for

PIEO and the related work in Section 2. My first suggestion

would be to improve upon this research by discussing the

limitations and drawbacks of PIEO. As described earlier in Part

C, the only suggestion for improvement in the original paper

was using a stronger, more expensive hardware. I would like to

see more work done, using more expensive hardware to

understand what the limiting factor of PIEO is.

In conjunction with my previous point, it would also be

interesting to implement pipelining on the PIEO design. The

experiments conducted during the original research used a non-

pipelined design for testing. The author states that some degree

of pipelining is possible, but the access to SRAM ports during

each memory stage of the primitive operation prevents a fully

pipelined design. Future work should be done to implement as

much pipelining as possible. The two designs could be

compared on various FPGAs and the pipelined version could be

tested for scalability and speed. It would also be interesting to

see what the hardware requirement would be for the non-

pipelined version to reach the same performance level a

pipelined version can reach on the original hardware.

Loom, the flexible packet scheduling framework in the NIC,

was discussed in Section 2. Loom uses a PIFO scheduler to

enforce its scheduling policies. Future work could be done to

implement Loom with PIEO rather than PIFO to see the effects

of speed and scalability. I would be interested in seeing how

difficult it would be to reimplement the design with PIEO as

well as any drawbacks in using PIEO over PIFO.

The last suggestion I have for future work would be a survey

of direct comparisons between schedulers in hardware and

schedulers in software that are built to reach hardware speeds.

As discussed earlier, PSPAT is an efficient software packet

scheduler that was designed to reach speeds near hardware

level. It can implement several scheduling policies just like

how PIEO can and remains flexible and scalable due to the

design in software. I would be interested in seeing how these

designs directly compare since PIEO was measured by clock

rate but PSPAT is measured in packets per second.

VI. CONCLUSION

This paper summarized and discussed a new packet

scheduling primitive called Push-In-Extract-Out (PIEO). It

assigns each element a rank and an eligibility predicate, pushes

elements into place within a queue, and schedules the “smallest

ranked eligible” element by extracting it out. PIEO has been

shown to be expressive, scalable, and fast by being prototyped

and tested on an FPGA against its predecessor PIFO. The

hardware implementation was able to schedule 216 elements at

an 80 MHz clock rate, which was the maximum clock rate of

PIFO when scheduling 28 elements. The ALMs consumption

was 64% less than PIFO and the SRAM consumption was

negligible even when scheduling 216 elements.

My opinion on the research is that it is compelling but

lacking in some areas that leave the reader confused or wanting

more. It is focused solely on the abilities of PIEO. There are

minimal performance comparisons made to similar technology

but going into further detail on these topics would make the

research feel more well-rounded. An in-depth discussion on the

limitations and drawbacks of PIEO would also make the

research more convincing. Overall, the paper was engaging and

interesting to read and serves as a good baseline for future work

to be built off it.

REFERENCES

[1] E. Koeze and N. Popper, “The Virus Changed the Way We Internet,” The
New York Times, 07-Apr-2020. [Online]. Available:
https://www.nytimes.com/interactive/2020/04/07/technology/coronaviru
s-internet-use.html. [Accessed: 12-May-2020].

[2] R. Browne, “The internet is under huge strain because of the coronavirus.
Experts say it can cope - for now,” CNBC, 27-Mar-2020. [Online].
Available: https://www.cnbc.com/2020/03/27/coronavirus-can-the-
internet-handle-unprecedented-surge-in-traffic.html. [Accessed: 12-May-
2020].

[3] K. Gyarmathy, “Comprehensive Guide to IoT Statistics You Need to
Know in 2020,” Data centers and Colocation Services. [Online].
Available: https://www.vxchnge.com/blog/iot-statistics. [Accessed: 12-
May-2020].

[4] L. Rizzo, P. Valente, G. Lettieri, and V. Maffione, “PSPAT: Software
packet scheduling at hardware speed,” Computer Communications, vol.
120, pp. 32–45, 2018.

[5] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in
hardware,” Proceedings of the ACM Special Interest Group on Data
Communication, 2019.

[6] A. Sivaraman, N. Mckeown, S. Subramanian, M. Alizadeh, S. Chole, S.-
T. Chuang, A. Agrawal, H. Balakrishnan, T. Edsall, and S. Katti,
“Programmable Packet Scheduling at Line Rate,” Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference - SIGCOMM 16,
2016.

[7] J. Liebeherr and E. Yilmaz, “Workconserving vs. non-workconserving
packet scheduling: an issue revisited,” 1999 Seventh International
Workshop on Quality of Service. IWQoS99. (Cat. No.98EX354).

[8] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and Efficient
{NIC} Packet Scheduling,” 16th USENIX Symposium on Networked
Systems Design and Implementation 19, 2019.

[9] P. Kuacharoen, M. A. Shalan, and V. J. Mooney, “A Configurable
Hardware Scheduler for Real-Time Systems ,” Proceedings of the
International Conference on Engineering of Reconfigurable Systems and
Algorithms, pp. 95–101, 2003.

[10] H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” IEEE
INFOCOM 93 The Conference on Computer Communications,
Proceedings.

[11] H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” IEEE
INFOCOM 93 The Conference on Computer Communications,
Proceedings.

