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Abstract—Increasing link speeds, network congestion, and an 

influx of connected devices have created a demand for packet 

schedulers that can support quantity and speed while maintaining 

quality of service. Offloading packet scheduling to hardware can 

meet the demands of speed but has serious drawbacks in 

scalability and flexibility of design. Current hardware schedulers 

that are being used, like Push-In-First-Out (PIFO) or First-In-

First-Out (FIFO), lack the ability to express a wide range of packet 

scheduling algorithms and policies. This paper summarizes 

research conducted in the paper “Fast, Scalable, and 

Programmable Packet Scheduler in Hardware” by Vishal 

Shrivastav; it describes a new iteration of the PIFO primitive 

called Push-In-Extract-Out (PIEO), which maintains an ordered 

list of elements and allows dequeue from any position by 

supporting a programmable filtering function. Next, the hardware 

implementation, results, and evaluation are reviewed. Finally, I 

present my thoughts on the paper, what I found most interesting, 

and issues that I have with the experiments conducted. Overall, 

the research on the PIEO primitive is new and interesting but 

lacks in areas that would make the case truly compelling. 

Keywords—hardware scheduler, programmable networks, 

programmable packet scheduler 

I. INTRODUCTION 

The Internet has become an all-encompassing medium for 

global communications, information access, streaming 

services, entertainment, and business. The 2020 Covid-19 

pandemic has created a sudden reliance on services that allow 

us to work and learn from home like Zoom, Google Classroom, 

and Microsoft Teams. Globally, internet service providers saw 

a 40-50% network traffic increase, with some companies 

throttling streaming quality to prevent congestion overload [1-

2]. The billions of connected devices coming online every year 

(a projected 75 billion by 2025 [3]) and increasing link speeds 

has created a critical demand for packet schedulers that can 

support the growing packet quantity and speed while 

maintaining quality of service. 

Packet schedulers are functions at the network protocol 

level responsible for allocating bandwidth to competing 

connections and implementing scheduling algorithms or 

policies. The goal of a packet scheduler is to address network 

congestion, latency, load balancing, and packet loss without 

simply relying on a “best effort” delivery. Scheduling 

determinations are made by different queuing algorithms and 

protocols such as Deficit Round Robin (DRR) or Token Bucket 

Filter (TBF). Schedulers can also work based on quality of 

service (QoS) protocols like Resource Reservation Protocol 

(RSVP) or Differentiated Services (DiffServ) to prioritize 

certain types of packets over others on the network. 

Scheduling can occur both in software and on hardware.  For 

instance, hardware implementations occur on network 

interfaces (NICs) field-programmable gate arrays (FPGAs) 

while software implementations are included in operating 

systems like Linux, dummynet, and BSD operating systems. 

Software schedulers allow for experimentation with policies or 

algorithms but come at the cost of high CPU utilization and 

lower time precision. For instance, software scheduling can 

barely support 1-2 millions of packets per second (Mpps), while 

a high-end NIC reaches peak rate of 59.5 Mpps [4]. Meeting 

nanosecond-level precision in software is difficult due to the 

serialization of data, low resolution software timers, and 

transmission jitter. On the other hand, hardware 

implementations are generally fast and precise, but lack 

programmability and flexibility. Hardware schedulers are also 

difficult to modify after execution and generally can only 

support one scheduling algorithm, resulting in a overall 

preference for software schedulers. The motivation of many 

new schedulers is to bridge the gap between the flexibility of 

software and speed of hardware by making the hardware 

scheduler configurable to support several algorithms. 

Research conducted by Vishal Shrivastav [5] proposed a 

new programmable packet scheduler in hardware, which is fast 

and scalable to overcome the limitations of schedulers in 

software. The proposed scheduling primitive Push-In-Extract-

Out (PIEO) maintains an ordered list of elements and filters to 

select the eligible element with the smallest rank to dequeue. 

To demonstrate the feasibility of this new scheduler Shrivastav 

also prototyped the design on a Stratix V FPGA. 

This paper focusses on summarizing and discussing the 

PIEO primitive. Section 2 provides background information 

and reviews relevant work in new scheduling primitives and 

implementations in hardware. Section 3 will provide more 

background information on PIEO scheduling. Section 4 will 

describe the hardware design and implementation on an FPGA. 

Next, Section 5 contains a discussion of PIEO; this will include 

my thoughts on the paper, issues with the experimentation, and 



my suggestions for future work based on relevant research in 

Section 4. Lastly, Section 6 will conclude the paper. 

II. BACKGROUND 

All scheduling algorithms are based on two decisions: i) 

when packets should be scheduled and ii) the order packets are 

scheduled based rank and all other elements enqueued. The 

rank property is determined by the chosen scheduling algorithm 

and programmed as function to assign ranks to individual 

elements. Generally, both decisions can be made as soon as a 

packet is enqueued.  

A. Packet Scheduling Primitives 

Typical hardware schedulers are based on one of the two 

scheduling primitives—First-In-First-Out (FIFO) or Push-In-

First-Out (PIFO). FIFO schedules packets in order of arrival. 

PIFO is a priority queue that pushes elements into position 

based on rank and always dequeues from the head of the queue 

[6]. PIFO supports two operations: enqueue(f), which inserts 

the element f into the queue according to its rank, and 

dequeue(), which extracts the head element of the queue.  

However, both primitives lack in scalability and 

expressiveness. The current PIFO design only scales to 2048 

flows, without finer granularity to support one flow per packet 

[6]. FIFO and PIFO are also not expressive enough to define 

classes required for certain scheduling algorithms. PIFO cannot 

support the dynamic filtering at dequeue that is becoming 

common in cloud network scheduling policies. 

B. Packet Scheduling Algorithms 

Packet scheduling algorithms or policies determine when 

and what order elements are scheduled while the primitive 

provides abstractions for implementation. Different rank 

functions and eligibility predicates gives the ability to express 

a wide range of scheduling algorithms through a single 

primitive. In addition, scheduling algorithms are classified into 

two categories: work-conserving and non-work conserving 

algorithms. The work-conserving category continuously sends 

packets as long as there are elements queued [7]. The scheduler 

always attempts to keep available resources busy. On the other 

hand, non-work conserving schedulers allow the link to be idle 

despite the presence of packets needing to be scheduled [7]. 

These schedulers are useful for traffic shaping, enhancing 

traffic predictability, and reducing jitter. 

C. Related Work 

Scheduling algorithms have been studied extensively, and 

there are multiple research papers that expand on scheduling in 

hardware with new architectures or programmability functions. 

LOOM [8]. Loom proposes a new NIC design that moves all 

per-flow scheduling decisions into the hardware. It is a 

customizable and flexible packet scheduler that can implement 

a variety of scheduling policies. Loom uses an OS/NIC 

interface and enables the OS to drive the link speeds. 

Offloading scheduling to the NIC ensures low CPU utilization. 

Loom is also the only multi-queue NIC design that can 

efficiently enforce network policy. It achieves this through two 

key components in the programmable NIC design: scheduling 

hierarchy and the OS/NIC interface that controls the NICs 

packet scheduling.  The hierarchy is implemented through a 

common tree of priority queues that rely on the PIFO primitive.  

Different scheduling algorithms are implemented by changing 

the rank computation and this model can emulate any 

scheduling algorithm. 

A Configurable Hardware Scheduler for Real-Time 

Systems [9]. This research presents a configurable hardware 

scheduler architecture that can implement three different 

scheduling policies: priority-based, rate monotonic, and earliest 

deadline first. The scheduler is fully run on an FPGA which 

allows for high-resolution timing and can be scaled by 

implementing fixed cycle operations. However, this 

implementation lacks in programmability and flexibility to 

implement more complicated scheduling policies. 

This research differs from other hardware implementations 

because it takes advantage of recent FPGA technology that has 

hardware that is reconfigurable in less than 1.5 ms. They place 

part of an RTOS in the hardware to reduce scheduling overhead 

and time-tick processing by thousands of assembly instructions 

for a system with 50 tasks. 

PSPAT [4]. PSPAT is an efficient and robust software 

implemented packet scheduler than can reach near hardware 

speed. This architecture decouples clients, scheduler, and 

device driver through the use of lock-free, memory-friendly 

mailboxes. This allows for distribution of work within in the 

system and maximum parallelism leading to a peak scheduling 

rate of almost 40 Mpps. PSPAT maintains scalability and 

flexibility to implement several different scheduling policies 

like DRR, WF2Q, and QFQ; however, it has high CPU 

utilization and memory stalls in the system are heavily 

dependent on the CPU architecture used. 

Programmable Packet Scheduling at Line Rate [6]. This was 

the original paper describing the Push-In-First-Out (PIFO) 

queue. The research details the implementation of a 

programmable PIFO scheduler in hardware that supports 5-

level hierarchical scheduling and runs at a clock frequency of 1 

GHz.  It also has the same buffer size as a typical shared 

memory switch in a data center which support ~60K packets 

and ~1K flows, while only used 4% additional chip area. 

III. PUSH-IN-EXTRACT-OUT (PIEO) PRIMITIVE AND HARDWARE 

IMPLEMENTATION 

This section describes the PIEO primitive and summarizes 

the programming framework that was used in the original 

research. 

A. PIEO Definition 

Push-In-Extract-Out is a generalization of the Push-In-

First-Out primitive. Each PIEO element has a rank and 

eligibility predicate that are programmed based on the user’s 

choice of scheduling policy. PIEO also maintains an ordered 

list of elements—increasing by rank—through the “Push-In” 

enqueue function. This ensures that each element is placed in 

the proper position within the ordered list. Finally, during 

scheduling, the “Extract-Out” function filters through elements 



whose eligibility predicates are true, and dequeues the element 

with the smallest rank. As a result, PIEO always schedules the 

“smallest ranked eligible” element. 

PIEO works through the use of three functions: enqueue(f), 

dequeue(), and dequeue(f). These operations are described 

below: 

enqueue(f): This function inserts the element f into the ordered 

list according to f’s rank. 

dequeue(): This function filters elements from the ordered list 

whose eligibility predicates are true. It selects the smallest 

ranked element and dequeues it. When a tie occurs for eligible 

elements, the oldest element is dequeued. If there are no eligible 

elements, the function returns NULL. 

dequeue(f): If a specific element f needs to be dequeued, this 

function dequeues it from the list without having to rely on rank 

or eligibility predicates. If element f does not exist within the 

list, the function returns NULL. This operation provides the 

flexibility to update the rank of an element if needed. For 

example, one would dequeue(f) the element, update the rank or 

predicate, then enqueue(f) again. 

B. PIEO in Scheduling Algorithms 

This section summarizes the expressiveness of the PIEO 

primitive among different scheduling algorithms including 

work-conserving, non-work conserving, hierarchical, 

asynchronous, and priority scheduling.  

Under work conserving algorithms, PIEO can express 

Deficit Round Robin (DRR), Weighted Fair Queuing (WFQ), 

and Worst-case Fair Queueing (WF2Q+). For example, WF2Q+ 

calculates a virtual start and finish time for each packet within 

a flow. It then schedules the flow whose head packet has the 

smallest finish time among all other flow heads. Within the 

PIEO primitive, element ranks would be equal to the finish time 

and the scheduling predicate would filter for elements that are 

eligible to be scheduled. 

In non-work conserving algorithms, PIEO can express 

Token Bucket (TB) and Rate-controlled Static-Priority 

Queuing (RCSP). RCSP is an algorithm that is used to shape 

traffic, by assigning eligibility times to each packet in a flow 

[10]. At any given time, it schedules the highest priority flow 

amongst all other flows. Within the PIEO structure, element 

rank would be assigned by the priority variable and the 

predicate would filter for elements whose time eligibility is 

true. 

Hierarchical scheduling is more difficult than flat 

scheduling due to grouping flows into different classes. The 

classes can contain custom scheduling policies that are unique 

to the class, so using a single PIEO is not possible. To express 

hierarchical scheduling a tree structure is used, where non-leaf 

nodes are higher classes, and leaf nodes represent flows. A 

PIEO is associated with each non-leaf node and used to 

schedule the node’s children according to an eligibility 

predicates and rank. The packets propagate upward until they 

dequeue at the root of the tree. If we have an n-level tree, n 

PIEOs are required to complete the scheduling. 

Asynchronous scheduling is a way to break out of the 

current scheduling algorithm to respond to packet scheduling 

issues. For instance, asynchronous tasks can be used to avoid 

starvation in strict priority scheduling or can be used to 

schedule back on network feedback. As described before, the 

dequeue(f) function can be used for asynchronous scheduling 

to dequeue, re-rank, then re-enqueue the necessary element. In 

the case of starvation avoidance, a user can define an alarm 

function and handler to observe time spent in queue and if the 

flow is starving, update the PIEO rank to increase its priority. 

Priority scheduling like Shortest Job First (SJF), Shortest 

Remaining Time First (SRTF), and Earliest Deadline First 

(EDF) are easily expressed in a priority queue data structure. A 

priority queue is easily expressed in PIEO by setting the rank to 

the correct priority value, and just setting the eligibility 

predicate for each element to true. With this method, elements 

are only scheduled according to the rank. 

C. PIEO Hardware Design and Implementation 

This section summarizes the PIEO hardware scheduler 

design and implementation. Shrivastav conducted the prototype 

on the Stratix V FPGA which is comprised of ~2500 20Kbit 

dual port SRAM blocks with block access latency of one clock 

cycle. The main goal of implementing a scheduler in hardware 

is to keep up with link speeds, therefore the implementation of 

PIEO needs to execute each enqueue or dequeue function in 

O(1) time. The hardware design stores the ordered list of 

elements within SRAM as an array (2√𝑁) of sublists of size 

√𝑁 elements. This hardware design requires 𝑂(√𝑁) flip flops 

and comparators. The sublists are ordered in increasing rank, 

and increasing order of eligibility time; therefore, both lists can 

be accessed and compared in one clock cycle. 

The enqueuing and dequeuing functions are conducted in 

the hardware as follows. First, parallel comparisons are made 

between to the two sublists to find the correct list to enqueue or 

dequeue from. The correct sublist is extracted from SRAM. 

Next, using parallel comparisons again and the priority policy, 

an element within the chosen sublist is enqueued or dequeued, 

and the new sublist is updated in SRAM. 

IV. RESULTS AND EVALUATION 

This section summarizes the results and evaluation of the 

PIEO hardware prototype. The performance was evaluated 

across three different metrics: scalability, scheduling rate, and 

programmability. Then, each field was compared against a 

PIFO implementation synthesized on the same FPGA. 

A. Scalability 

The scalability metric in the research evaluated the 

percentage of Adaptive Logic Modules (ALMs) and the 

percentage of SRAM consumed. The ALMs were used to 

implement the combinational and flip-flop-based logic, while 

the SRAM was used to store the ordered list. 

Figure 1 shows the results of the percentage of consumed 

ALMs using PIFO versus PIFO. The control PIFO 

implementation consumed 64% of the available resources when 

handling a scheduler size of 1 K elements. The figure also 

shows that PIFO reaches it maximum size before 2 K elements 



meaning the scalability is limited. In contrast, PIEO compares 

well, reaching only about 10% consumption at 1 K elements 

and ~15% at 2 K elements. The graph does not even show it 

reaching maximum resource capacity, so the FPGA can easily 

fit a 30 K element scheduler. 

PIFO consumes exponentially more ALMs that PIEO 

because it does not rely on SRAM and flip-flops to distribute 

storage and processing. This is also why Figure 2 does not show 

the SRAM consumption of PIFO. However, it does shows that 

despite PIEO’s SRAM overhead, the total consumption 

remained well below 10% for the first 16 K elements and 

remained under 30% usage up to 65.5 K elements. 

B. Scheduling Rate 

The next metric evaluated was scheduling rate or the rate at 

which the scheduler could make decisions. The scheduling rate 

is a function of the clock rate of the scheduler circuit and the 

number of cycles needed to execute each primitive operation. 

Figure 3 shows the clock rates achieved by both PIFO and 

PIEO. Due to the scalability limits of PIFO the clock rate could 

only be tested up to 210 elements. Through the three points 

collected PIFO performed twice as well as PIEO did. It is also 

important to note that PIEO was not pipelined in this test while 

PIFO was. PIEO’s design is limited by the number of SRAM 

access ports and memory stages in different operations cannot 

be executed in parallel meaning it can never be fully pipelined. 

PIEO takes 4 clock cycles or about 50 ns per every primitive 

operation. However, the clock rates achieved are both a 

function of design and the hardware device used. The author 

suggests that the design would run at much higher clock rates 

on more powerful FPGAs or ASIC hardware. For example, the 

PIFO design had a rate of 57MHz on the FPGA used while 

performing at 1 GHz on an ASIC. The report extrapolates that 

PIEO would take 4 ns at a 1 GHz clock rate. 

C. Programmability 

The last metric evaluated was programmability that the 

PIEO primitive has and its ability to express a wide range of 

scheduling algorithms. The author programmed two algorithms 

using PIEO—Token Bucket and WF2Q—that were discussed 

earlier. Token Bucket and WF2Q were chosen because they 

implement rate-limiting and fair queuing which are widely used 

policies in real-life scheduling implementations. Rate-limiting 

is used to control the rate of requests that are sent or received, 

and it is used to prevent denial of service attacks. Fair queuing 

is designed to achieve fairness over all flows to prevent 

starvation or greedy usage. The algorithms were then 

prototyped on the FPGA using System Verilog. A two-level 

hierarchical scheduler was prototyped, with ten nodes at level-

2 and 10 flows within each node for a total of 100 flows. Figure 

4 shows the rate limit enforcement of the PIEO and that it was 

successful across all Gbps. Figure 5 shows the results from the 

fair queueing experiments. PIEO was able to accurately enforce 

fair queueing across all flows with all rates. 

V. DISCUSSION 

PIEO represents a novel data structure that a hardware 

packet scheduler can rely on. The research presented both a fast 

and scalable implementation of an ordered list in hardware. 

This section will be discussing my overall thoughts of the 

paper; it will be split into a) my general opinions of the paper, 

b) what I found most interesting and enjoyed, c) my criticisms 

of the research and issues I had with experimentation, and lastly 

d) suggestions for future work based on related work discussed 

in Section 2. 

A. General Opinions 

Starting with my general opinions about the work, I thought 

the premise was fascinating. After reading through the abstract 

and introduction, I was immediately interested because the 

paper promised to bridge the gap between software and 

hardware schedulers. They proposed a programmable hardware 

scheduler that is “fast, scalable, and more expressive than state-

of-the-art” and I wanted to read further about how a new, simple 

primitive could achieve these statements. I also appreciated that 

it was instantly clear what the author was evaluating and how 

he continuously reiterated the three criteria: speed, scalability, 

and programmability so the reader was never lost on the main 

points. The paper also fit into my general interests because it 

combined low-level algorithms with FPGAs. 

Tying in with the interest factor, is how easy, 

understandable, and straightforward the writing was. Unlike 

other research papers I have read, this captured my attention, 

then maintained it with clean, easy to understand writing. I was 

surprised at the lack of proofs, equations, and math; the 

introduction is the only section where time complexity is 

mentioned, and it is brief. It was also clearly split into two 

sections: describing PIEO and the hardware implementation of 

it. The paper is very short, so it is not boring to read through. It 

is 12 pages without the references, and only 7 pages of text 

  

Fig. 1. Percentage of logic modules 

(ALMs) consumed. 

  

Fig. 2. SRAM consumption out of 6.4 

MB. 

  

Fig. 3. Clock rates achieved by PIEO and 

PIFO. 



when accounting for the number of figures—12 total—and the 

amount of pseudocode. However, I also felt that the paper was 

too brief on certain explanations; this problem will be discussed 

further below. 

As mentioned, this paper relies heavily on figures and 

pseudocode to explain the PIEO model, programming 

framework, and different types of packet scheduling. Some of 

the figures were helpful, such as the generic packet scheduling 

model versus the PIEO scheduling model. These figures make 

the differences and improvements clear. However, I felt that 

other figures were poorly designed, and the written 

explanations were more understandable. For instance, there are 

two figures that the diagram the enqueue and dequeue 

operations from PIEO when conducted on an ordered list of size 

16 elements (8 sublists each of size 4). Both figures show 32 

columns of gray boxes filled with extremely small text; it was 

so unreadable I ignored them in favor of the step-by-step text 

descriptions. I feel like figures should be used to provide the 

reader with more insight into a topic; in this case, I gained a 

better understanding from the written explanations. 

To conclude my general opinions, I think this paper did well 

in style and readability.  However, it could use improvement in 

sections that were too brief in explanation and figures that were 

too small to be readable. 

B. Positives in Technical Areas 

This section discusses the positive aspects of the technical 

areas. First, I really appreciated the simplicity of design.  The 

author proposes PIEO which is a generalized version of PIFO. 

By making the original PIFO design more generic, the author 

was able to make the primitive more flexible than its 

predecessor.  The original design uses the first out mechanism, 

which only dequeues from the head of the queue.  The extract 

mechanisms allow the user to program any dequeue criteria.  

This small change allows PIEO to express key classes of packet 

scheduling algorithms that PIFO cannot.  

The straightforward design and minimal changes made to 

PIFO in order to create PIEO also make the results more 

impactful on the reader. I was surprised by the large differences 

in scalability and speed between the two primitives. It speaks 

clearly on how merely changing the dequeue method drastically 

improves the performance of the scheduler. Looking back on 

Figures 1 and 3, the differences in ALMs consumed and clock 

rates achieved are even more impressive when understanding 

how minimal the design changes were.  

Another detail of the technical writing that I thought was 

positive was the in-depth descriptions showing the 

expressiveness of PIEO. In the original paper Section 4 goes 

through multiple classes of algorithms such as work 

conserving, non-work-conserving, hierarchical, asynchronous, 

and priority scheduling. I appreciated the comprehensive 

overview of how PIEO was implemented in each case.  The 

pseudocode also makes it clear on how the primitive is used 

within the context of each scheduling policy; I could easily see 

what the eligibility predicate was set to and what determined 

rank for the enqueueing function. 

C. Drawbacks in Technical Areas 

There were several areas in the paper that did not perform 

as a well; this section will be discussing issues that I had with 

the experimentation and evaluation. My first criticism is the 

lack of thorough comparisons between PIEO and other 

queueing structures. Throughout the paper all the results show 

PIEO performs far superior to the PIFO predecessor, but this is 

the only comparison that is made. As a reader, I feel like the 

results and evaluation would be more compelling if the there 

were direct comparisons between the performance of PIEO and 

other hardware schedulers. Even if the author could not conduct 

the tests, he could report on the speed values or consumption of 

resources provided in other research papers. I think even 

implementing FIFO in hardware to have third data set would 

greatly improve the reporting.  With a third set, the reader could 

really begin to understand how much an improvement PIEO 

would be on current scheduling primitives. The current state of 

the paper makes comparisons between two relatively unknown 

queuing data structures so some of the significance is lost. 

Next, there is also a lack of discussion on limitations and 

improvements. Much like the point about making comparisons, 

I feel that discussing limitations is important in making a 

compelling case to the reader. As I was reading the glowing 

performance evaluation, I began to question why this design 

was not being immediately used in all hardware schedulers. Is 

it because the solution is expensive (requires a $6,000 FPGA), 

is it because PIEO cannot be pipelined, or is it due to difficulty 

in implementation? These are questions that I had after reading 

the results evaluation. In addition, the only suggestion for 

improvement was to implement PIEO on a better, more 

 

Fig. 4. Rate limit enforcement in PIEO. 

  

Fig. 5. Fair queue enforcement in PIEO. 



expensive FPGA or on ASIC hardware, which is also very 

expensive. 

Lastly, I had several issues with the specific section: 6.3 

Programmability. This section of the paper described the testing 

and evaluation of the programmability criteria. My main 

criticism is that programmability is not defined, and it is not 

clear why it is being tested. The previous section in the paper 

that discusses the expressiveness of PIEO and implements 

various algorithms in pseudocode does a great job in showing 

the programmability. The actual testing only implements two—

Token Bucket and WF2Q—of the many algorithms that were 

described. The algorithms were chosen because they implement 

widely used scheduling policies, rate-limiting and fair-queuing. 

However, the case for flexibility and programmability would be 

much stronger if more scheduling algorithms were prototyped.  

In addition, the graphs, shown in Figure 4 and 5 do not show or 

provide further insights for the reader and the accompanying 

text was also lacking. Overall, this section was the weakest in 

the paper, and I feel like it could have been fully left out. 

D. Future Work 

In this portion I will be discussing ideas for future work for 

PIEO and the related work in Section 2. My first suggestion 

would be to improve upon this research by discussing the 

limitations and drawbacks of PIEO. As described earlier in Part 

C, the only suggestion for improvement in the original paper 

was using a stronger, more expensive hardware. I would like to 

see more work done, using more expensive hardware to 

understand what the limiting factor of PIEO is. 

In conjunction with my previous point, it would also be 

interesting to implement pipelining on the PIEO design. The 

experiments conducted during the original research used a non-

pipelined design for testing. The author states that some degree 

of pipelining is possible, but the access to SRAM ports during 

each memory stage of the primitive operation prevents a fully 

pipelined design. Future work should be done to implement as 

much pipelining as possible. The two designs could be 

compared on various FPGAs and the pipelined version could be 

tested for scalability and speed. It would also be interesting to 

see what the hardware requirement would be for the non-

pipelined version to reach the same performance level a 

pipelined version can reach on the original hardware. 

Loom, the flexible packet scheduling framework in the NIC, 

was discussed in Section 2.  Loom uses a PIFO scheduler to 

enforce its scheduling policies. Future work could be done to 

implement Loom with PIEO rather than PIFO to see the effects 

of speed and scalability. I would be interested in seeing how 

difficult it would be to reimplement the design with PIEO as 

well as any drawbacks in using PIEO over PIFO. 

The last suggestion I have for future work would be a survey 

of direct comparisons between schedulers in hardware and 

schedulers in software that are built to reach hardware speeds. 

As discussed earlier, PSPAT is an efficient software packet 

scheduler that was designed to reach speeds near hardware 

level.  It can implement several scheduling policies just like 

how PIEO can and remains flexible and scalable due to the 

design in software.  I would be interested in seeing how these 

designs directly compare since PIEO was measured by clock 

rate but PSPAT is measured in packets per second. 

VI. CONCLUSION 

This paper summarized and discussed a new packet 

scheduling primitive called Push-In-Extract-Out (PIEO). It 

assigns each element a rank and an eligibility predicate, pushes 

elements into place within a queue, and schedules the “smallest 

ranked eligible” element by extracting it out. PIEO has been 

shown to be expressive, scalable, and fast by being prototyped 

and tested on an FPGA against its predecessor PIFO.  The 

hardware implementation was able to schedule 216 elements at 

an 80 MHz clock rate, which was the maximum clock rate of 

PIFO when scheduling 28 elements.  The ALMs consumption 

was 64% less than PIFO and the SRAM consumption was 

negligible even when scheduling 216 elements. 

My opinion on the research is that it is compelling but 

lacking in some areas that leave the reader confused or wanting 

more. It is focused solely on the abilities of PIEO. There are 

minimal performance comparisons made to similar technology 

but going into further detail on these topics would make the 

research feel more well-rounded. An in-depth discussion on the 

limitations and drawbacks of PIEO would also make the 

research more convincing. Overall, the paper was engaging and 

interesting to read and serves as a good baseline for future work 

to be built off it. 
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